340

21 Nanomaterials and Biopolymers for the Remediation of Polluted Sites

15 Naveed Ul Haq, A., Nadhman, A., Ullah, I. et al. (2017). Synthesis approaches of

zinc oxide nanoparticles: the dilemma of ecotoxicity. Journal of Nanomaterials

https://doi.org/10.1155/2017/8510342.

16 Vanaamudan, A., Sadhu, M., and Pamidimukkala, P. (2018). Chitosan-Guar gum

blend silver nanoparticle bionanocomposite with potential for catalytic degrada-

tion of dyes and catalytic reduction of nitrophenol. Journal of Molecular Liquids

271: 202–208. https://doi.org/10.1016/j.molliq.2018.08.136.

17 Shankar, S. and Rhim, J.W. (2018). Bionanocomposite films for food packaging

applications. Reference Module in Food Science: 1–10. https://doi.org/10.1016/

B978-0-08-100596-5.21875-1.

18 Pathania, D., Gupta, D., Kothiyal, N.C. et al. (2016). Preparation of a novel

chitosan-g-poly (acrylamide)/Zn nanocomposite hydrogel and its applications

for controlled drug delivery of ofloxacin. International Journal of Biological

Macromolecules 84: 340–348.

19 Kolangare, I.M., Isloor, A.M., Karim, Z.A. et al. (2019). Antibiofouling hollow-

fiber membranes for dye rejection by embedding chitosan and silver-loaded

chitosan nanoparticles. Environmental Chemistry Letters 17: 581–587.

https://doi.org/10.1007/s10311-018-0799-3.

20 Adnan, M.A.M., Phoon, B.L., and Julkapli, N.M. (2020). Mitigation of pollutants

by chitosan/metallic oxide photocatalyst: a review. Journal of Cleaner Production:

121190. https://doi.org/10.1016/j.jclepro.2020.121190.

21 Olivera, S., Muralidhara, H.B., and Venkatesh, K. (2016). Potential applications

of cellulose and chitosan nanoparticles/composites in wastewater treatment: a

review. Carbohydrate Polymers 153: 600–618.

22 Wang, J. and Chen, C. (2014). Chitosan-based biosorbents: modification and

application for biosorption of heavy metals and radionuclides. Bioresource

Technology 160: 129–141.

23 Mansur, H.S. and Mansur, A.A.P. (2015). Nano-photocatalysts based on ZnS

quantum dots/chitosan for the photodegradation of dye pollutants. IOP Confer-

ence Series: Materials Science and Engineering 76 (1): 012003.

24 Farshchi, E., Pirsa, S., Roufegarinejad, L. et al. (2019). Photocatalytic/

biodegradable film based on carboxymethyl cellulose, modified by gelatin and

TiO2–Ag nanoparticles. Carbohydrate Polymers 216: 189–196.

25 Sathiyavimal, S., Vasantharaj, S., Kaliannan, T. et al. (2020). Eco-biocompatibility

of chitosan coated biosynthesized copper oxide nanocomposite for enhanced

industrial (Azo) dye removal from aqueous solution and antibacterial properties.

Carbohydrate Polymers: 116243. https://doi.org/10.1016/j.carbpol.2020.116243.

26 Bahal, M., Kaur, N., and Sharotri, N. (2019). Investigations on amphoteric

chitosan/TiO2 bionanocomposites for application in visible light induced

photocatalytic degradation. Advances in Polymer Technology https://doi.org/

10.1155/2019/2345631.

27 Kora, A.J. and Rastogi, L. (2016). Catalytic degradation of anthropogenic dye

pollutants using palladium nanoparticles synthesized by gum olibanum, a glu-

curonoarabinogalactan biopolymer. Industrial Crops and Products 81: 1–10.